✯ МГЕ-10А
ОСТ 38. 01281-82 МГЕ-10А вырабатывается на основе глубокодеароматизированной низкозастывающей фракции, получаемой из продуктов гидрокрекинга смеси парафинистых нефтей.
ООО "ЭдвансОйлГрупп" предлагает поставки гидравлических масел по всей России. Теперь купить гидравлические масла можно на всей территории России.
Позвоните нам:
✆ +7 (831) 435-15-12
Вы можете связаться с нашими менеджерами по электронной почте:
Мы расскажем Вам о наличии и сроках поставки нужного Вам продукта, Сделаем Вам специальное предложение при покупке оптом. Мы рады сотрудничать с Вами!
ОСТ 38. 01281-82 МГЕ-10А вырабатывается на основе глубокодеароматизированной низкозастывающей фракции, получаемой из продуктов гидрокрекинга смеси парафинистых нефтей.
ГОСТ 6794-75
Гидроникойл FH 51 - рабочая жидкость для гидросистем
ТУ 38.401-58-57-93 НГЖ-5у - синтетическая взрывопожаробезопасная, эрозионностойкая жидкость. Не производится, аналог: Skydrol LD-4
Масло ЛЗ-МГ-2 (ТУ 38.101328-81) получают вторичной перегонкой очищенной керосиновой фракции из нефтей нафтенового основания.
ГОСТ 20734-75 Гидравлическая жидкость 7-50С-3 ГОСТ 20734-75 - современная альтернатива АМГ-10 ГОСТ 6794-75.
Общие требования и свойства
Гидравлические масла (рабочие жидкости для гидравлических систем) разделяют на нефтяные, синтетические и водно-гликолевые.
По назначению их делят в соответствии с областью применения:
В данной главе рассмотрены рабочие жидкости для гидросистем мобильной техники, обозначенные ГОСТ 17479.3—85 как гидравлические масла, а также некоторые наиболее распространенные гидротормозные и амортизаторные жидкости на нефтяной и синтетической основах. Основная функция рабочих жидкостей (жидких сред) для гидравлических систем - передача механической энергии от ее источника к месту использования с изменением значения или направления приложенной силы.
Гидравлический привод не может действовать без жидкой рабочей среды, являющейся необходимым конструкционным элементом любой гидравлической системы.
В постоянном совершенствовании конструкций гидроприводов отмечаются следующие тенденции:
С целью удовлетворения требований, продиктованных указанными тенденциями развития гидроприводов, современные рабочие жидкости (гидравлические масла) для них должны обладать опреде¬ленными характеристиками:
Большинство массовых сортов гидравлических масел вырабатывают на основе хорошо очищенных базовых масел, получаемых из рядовых нефтяных фракций с использованием современных технологических процессов экстракционной и гидрокаталитической очистки. Физико-химические и эксплуатационные свойства современных гидравлических масел значительно улучшаются при введении в них функциональных присадок — антиокислительных, антикоррозионных, противоизносных, антипенных и др.
Вязкостные и низкотемпературные свойства определяют температурный диапазон эксплуатации гидросистем и оказывают решающее влияние на выходные характеристики гидропривода. При выборе вязкости гидравлического масла важно знать тип насоса. Изготовители насоса, как правило, рекомендуют для него пределы вязкости: максимальный, минимальный и оптимальный. Максимальная — это наибольшая вязкость, при которой насос в состоянии прокачивать масло. Она зависит от мощности насоса, диаметра и протяженности трубопровода. Минимальная — это та вязкость при рабочей температуре, при которой гидросистема работает достаточно надежно. Если вязкость уменьшается ниже допустимой, растут объемные потери (утечки) в насосе и клапанах, соответственно падает мощность и ухудшаются условия смазывания. Пониженная вязкость гидравлического масла вызывает наиболее интенсивное проявление усталостных видов изнашивания контактирующих деталей гидросистемы. Повышенная вяз¬кость значительно увеличивает механические потери привода, затруд-няет относительное перемещение деталей насоса и клапанов, делает невозможной работу гидросистем в условиях пониженных температур. Вязкость масла непосредственно связана с температурой кипения масляной фракции, ее средней молекулярной массой, с групповым химическим составом и строением углеводородов. Указанными факторами определяется абсолютная вязкость масла, а также его вязкостно-температурные свойства, т.е. изменение вязкости с изменением температуры. Последнее характеризуется индексом вязкости масла.
Для улучшения вязкостно-температурных свойств применяют вязкостные (загущающие) присадки — полимерные соединения. В составе товарных гидравлических масел в качестве загущающих присадок используют полиметакрилаты, полиизобутилены и продукты полимери¬зации винил-бутилового эфира (винипол).
Антиокислительная и химическая стабильности характеризуют стойкость масла к окислению в процессе эксплуатации под воздействием температуры, усиленного барботажа масла воздухом при работе насоса. Окисление масла приводит к изменению его вязкости (как правило, к повышению) и к накоплению в нем продуктов окисления, образующих осадки и лаковые отложения на поверхностях деталей гидросистемы, что затрудняет ее работу. Повышения антиокислительных свойств гидравлических масел достигают путем введения антиокислительных присадок обычно фенольного и аминного типов.
В гидросистемах машин и механизмов присутствуют детали из разных металлов: разных марок стали, алюминия, бронзы, которые могут подвергаться коррозионно-химическому изнашиванию. Коррозия металлов может быть электрохимической, возникающей обычно в присутствии воды, и химической, протекающей под воздействием химически агрессивных сред (кислых соединений, образующихся в процессе окисления масла) и под воздействием химически-активных продуктов расщепления присадок при повышенных контактных температурах поверхностей трения. Устранению коррозии металлов способствуют вводимые в масло присадки — ингибиторы окисления, препятствующие образованию кислых соединений, и специальные антикоррозионные добавки.
Стремление к улучшению противоизносных свойств гидравлических масел вызвано включением в новые конструкции гидравлических систем интенсифицированных гидравлических насосов. Наибольшее распространение в качестве присадок, обеспечивающих достаточный уровень противоизносных свойств гидравлических масел, наибольшее распространение получили диалкилдитиофосфаты металлов (в основном цинка) или беззольные (аминные соли и сложные эфиры дитиофосфорной кислоты).
К гидравлическим маслам предъявляют достаточно жесткие требования по нейтральности их по отношению к длительно контак¬тирующим с ними материалам. Учитывая, что рабочие температуры масла в современных гидропередачах достаточно высоки и резиновые уплотнения могут быстро разрушаться, в гидравлических маслах недопустимо высокое содержание ароматических углеводородов, проявляющих наибольшую агрессивность по отношению к резинам. Содер¬жание ароматических углеводородов характеризуется показателем «анилиновая точка» базового масла.
При работе циркулирующих гидравлических масел недопустимо ледообразование. Оно нарушает подачу масла к узлу трения и, насыщая масло воздухом, интенсифицирует его окисление, ухудшая отвод тепла от рабочих поверхностей, вызывает кавитационные повреждения деталей, перегрев гидропривода и его повышенный износ. Для обеспечения хороших антипенных свойств масла преимущественное значение имеет полнота удаления из базового масла поверхностно-активных смолистых веществ. Чтобы предотвратить образование пены или ускорить ее разрушение, в масло вводят антипенную присадку (например, полиметилсилокеан), которая снижает поверхностное натяжение на границе раздела жидкости и воздуха, что приводит к ускоренному разрушению пузырьков пены. В составе гидравлических масел крайне нежелательно наличие механических примесей и воды. Вследствие весьма малых зазоров рабочих; пар гидросистем (особенно, оснащенных аксиально-поршневыми механизмами) наличие загрязнений может привести не только к износу элементов гидрооборудования, но и к заклиниванию деталей. Для очистки рабочей жидкости от загрязнений в гидросистемах применяют фильтры различных типов. Даже незначительное количество (0,05—0,1 %) воды отрицательно влияет на работу гидросистем. Вода, попадающая в гидросистему с маслом или в процессе эксплуатации, ускоряет процесс окисления масла, вызывает гидролиз гидролитически неустойчивых компонентов масла (в частности, присадок — солей металлов). Продукты гидролиза присадок вызывают электрохимическую коррозию металлов гидросистемы. Вода способствует образованию шлама неорганического т. и органического происхождения, который забивает фильтр и зазоры оборудования, тем самым нарушая работу гидросистемы. К некоторым маслам предъявляют специфические, дополнительные требования. Так, масла, загущенные полимерными присадками, должны обладать достаточно высокой стойкостью к механической и термической деструкции; для масел, эксплуатируемых в гидросистемах речной и морской техники, особенно важна влагостойкость присадок и малая эмульгаруемость.